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Introduction

Setting 1.1

2 ≤ t ≤ m ≤ n integers

X = [Xij ] an m × n matrix of indeterminates over an infinite field k

S = k[X ] = k[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n] the polynomial ring

It(X ) the ideal of S generated by the t × t minors of the matrix X

R = S/It(X )

Then R is a Cohen-Macaulay normal domain and

R is Gorenstein ⇐⇒ m = n.
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History of almost Gorenstein rings

[Barucci-Fröberg, 1997]

· · · one-dimensional analytically unramified local rings

[Goto-Matsuoka-Phuong, 2013]

· · · one-dimensional Cohen-Macaulay local rings

[Goto-Takahashi-T, 2015]

· · · higher-dimensional Cohen-Macaulay local/graded rings
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Question 1.2

When do the determinantal rings satisfy almost Gorenstein property?
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Preliminaries

Setting 2.1

(A,m) a Cohen-Macaulay local ring with d = dimA

|A/m| = ∞

∃ KA the canonical module of A

Definition 2.2 (Goto-Takahashi-T, 2015)

We say that A is an almost Gorenstein local ring, if ∃ an exact sequence

0 → A → KA → C → 0

of A-modules such that µA(C ) = e0m(C ).
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Setting 2.3

R =
⊕

n≥0 Rn a Cohen-Macaulay graded ring with d = dimR

(R0,m) a local ring s.t. |R0/m| = ∞

∃ KR the graded canonical module of R

M = mR + R+

Definition 2.4 (Goto-Takahashi-T, 2015)

We say that R is an almost Gorenstein graded ring, if ∃ an exact sequence

0 → R → KR(−a(R)) → C → 0

of graded R-modules such that µR(C ) = e0M(C ).
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Note that

R is an almost Gorenstein graded ring

=⇒ RM is an almost Gorenstein local ring.

⇐= NOT true in general.

Example 2.5 (Goto-Takahashi-T, 2015)

Let k be an infinite field and

R = k[s, s3t, s3t2, s3t3] ⊆ U

where U = k[s, t] be the polynomial ring over k .
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Theorem 2.6 (Goto-Takahashi-T, 2015)

Let R = k[R1] be a Cohen-Macaulay homogeneous ring with d = dimR > 0.
Suppose that R is not a Gorenstein ring and |k | = ∞. Then TFAE.

(1) R is an almost Gorenstein graded ring and level.

(2) Q(R) is a Gorenstein ring and a(R) = 1− d.

From now on, we maintain the notation as in Setting 1.1.

Corollary 2.7

R = S/It(X ) is an almost Gorenstein graded ring ⇐⇒ m = n, or m ̸= n and
m = t = 2.
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Set M = R+. Then

R = k[X ]/It(X ) : AGG =⇒ RM = (k[X ]/It(X ))M : AGL

⇐⇒ k[[X ]]/It(X ) : AGL

Theorem 2.8

The following conditions are equivalent.

(1) R is an almost Gorenstein graded ring.

(2) RM is an almost Gorenstein local ring.

(3) Either m = n, or m ̸= n and m = t = 2.
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Proof of Theorem 2.8

For a moment, suppose that ck k = 0 and m ̸= n. Let

0 → F → G → · · · → S → R → 0 (♯)

be a graded minimal S-free resolution of R.

Let

α =

n−m−1∏
j=0

(
m−t∏
i=1

(t + i + j)

)
n−m−2∏

i=0

(t + i) · 1! · 2! · · · (m − t − 1)! · (m − t)!

(n −m − 1)! · (n −m + 1)! · (n −m + 2)! · · · (n − t − 1)! · (n − t)!
.

Proposition 3.1

r(R) = rankSF =
t + n −m − 1

n −m
· α, rankSG = n · (m − t + 1) · α
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Take the KS -dual of (♯), we get the presentation of KR , which yields that

µR(M KR) ≥ mn · r(R)− rankSG .

Remark 3.2

Note that the Hilbert series of R doesn’t depend on the field, so is the Hilbert
series of KR . Hence µR(M KR) doesn’t depend on ch k .

Theorem 2.8

The following conditions are equivalent.

(1) R is an almost Gorenstein graded ring.

(2) RM is an almost Gorenstein local ring.

(3) Either m = n, or m ̸= n and m = t = 2.
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Proof of Theorem 2.8

We may assume m ̸= n. Since A = RM is an almost Gorenstein local ring, ∃ an
exact sequence

0 → A → KA → C → 0

of A-modules s.t. µA(C ) = e0m(C ), where m = MRM .

Then
0 → m → mKA → mC → 0

whence

µA(mKA) ≤ µA(m) + µA(mC )

≤ mn + (d − 1)(r(A)− 1)

because mC = (f1, f2, . . . , fd−1)C for ∃ fi ∈ m, where d = dimA.
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Proof of Theorem 2.8

Therefore

mn · r(A)− rankSG ≤ µA(mKA) ≤ mn + (d − 1)(r(A)− 1)

which yields that

(mn − (d − 1)) (r(A)− 1) ≤ rankSG .

Hence

{(m − (t − 1))(n − (t − 1)) + 1}
(
t + n −m − 1

n −m
· α− 1

)
≤ n(m − (t − 1))α.

Then a direct computation shows that t = 2, whence m = 2 as desired.

Naoki Taniguchi (Meiji University) Almost Gorenstein determinantal rings March 27, 2017 13 / 14



Introduction Preliminaries Proof of Theorem 2.8

Thank you so much for your attention.
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